Major refactor: Consolidate DSS into unified package structure

- Create new dss/ Python package at project root
- Move MCP core from tools/dss_mcp/ to dss/mcp/
- Move storage layer from tools/storage/ to dss/storage/
- Move domain logic from dss-mvp1/dss/ to dss/
- Move services from tools/api/services/ to dss/services/
- Move API server to apps/api/
- Move CLI to apps/cli/
- Move Storybook assets to storybook/
- Create unified dss/__init__.py with comprehensive exports
- Merge configuration into dss/settings.py (Pydantic-based)
- Create pyproject.toml for proper package management
- Update startup scripts for new paths
- Remove old tools/ and dss-mvp1/ directories

Architecture changes:
- DSS is now MCP-first with 40+ tools for Claude Code
- Clean imports: from dss import Projects, Components, FigmaToolSuite
- No more sys.path.insert() hacking
- apps/ contains thin application wrappers (API, CLI)
- Single unified Python package for all DSS logic

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2025-12-10 12:43:18 -03:00
parent bbd67f88c4
commit 41fba59bf7
197 changed files with 3185 additions and 15500 deletions

0
apps/api/__init__.py Normal file
View File

349
apps/api/ai_providers.py Normal file
View File

@@ -0,0 +1,349 @@
"""
AI Provider abstraction for Claude and Gemini
Handles model-specific API calls and tool execution
"""
import os
import json
import asyncio
from typing import List, Dict, Any, Optional
from abc import ABC, abstractmethod
class AIProvider(ABC):
"""Abstract base class for AI providers"""
@abstractmethod
async def chat(
self,
message: str,
system_prompt: str,
history: List[Dict[str, Any]],
tools: Optional[List[Dict[str, Any]]] = None,
temperature: float = 0.7
) -> Dict[str, Any]:
"""
Send a chat message and get response
Returns: {
"success": bool,
"response": str,
"model": str,
"tools_used": List[Dict],
"stop_reason": str
}
"""
pass
class ClaudeProvider(AIProvider):
"""Anthropic Claude provider"""
def __init__(self):
self.api_key = os.getenv("ANTHROPIC_API_KEY")
self.default_model = "claude-sonnet-4-5-20250929"
def is_available(self) -> bool:
"""Check if Claude is available"""
try:
from anthropic import Anthropic
return bool(self.api_key)
except ImportError:
return False
async def chat(
self,
message: str,
system_prompt: str,
history: List[Dict[str, Any]],
tools: Optional[List[Dict[str, Any]]] = None,
temperature: float = 0.7,
mcp_handler=None,
mcp_context=None
) -> Dict[str, Any]:
"""Chat with Claude"""
if not self.is_available():
return {
"success": False,
"response": "Claude not available. Install anthropic SDK or set ANTHROPIC_API_KEY.",
"model": "error",
"tools_used": [],
"stop_reason": "error"
}
from anthropic import Anthropic
client = Anthropic(api_key=self.api_key)
# Build messages
messages = []
for msg in history[-6:]:
role = msg.get("role", "user")
content = msg.get("content", "")
if content and role in ["user", "assistant"]:
messages.append({"role": role, "content": content})
messages.append({"role": "user", "content": message})
# API params
api_params = {
"model": self.default_model,
"max_tokens": 4096,
"temperature": temperature,
"system": system_prompt,
"messages": messages
}
if tools:
api_params["tools"] = tools
# Initial call
response = await asyncio.to_thread(
client.messages.create,
**api_params
)
# Handle tool use loop
tools_used = []
max_iterations = 5
iteration = 0
while response.stop_reason == "tool_use" and iteration < max_iterations:
iteration += 1
tool_results = []
for content_block in response.content:
if content_block.type == "tool_use":
tool_name = content_block.name
tool_input = content_block.input
tool_use_id = content_block.id
# Execute tool via MCP handler
result = await mcp_handler.execute_tool(
tool_name=tool_name,
arguments=tool_input,
context=mcp_context
)
tools_used.append({
"tool": tool_name,
"success": result.success,
"duration_ms": result.duration_ms
})
# Format result
if result.success:
tool_result_content = json.dumps(result.result, indent=2)
else:
tool_result_content = json.dumps({"error": result.error})
tool_results.append({
"type": "tool_result",
"tool_use_id": tool_use_id,
"content": tool_result_content
})
# Continue conversation with tool results
messages.append({"role": "assistant", "content": response.content})
messages.append({"role": "user", "content": tool_results})
response = await asyncio.to_thread(
client.messages.create,
**{**api_params, "messages": messages}
)
# Extract final response
response_text = ""
for content_block in response.content:
if hasattr(content_block, "text"):
response_text += content_block.text
return {
"success": True,
"response": response_text,
"model": response.model,
"tools_used": tools_used,
"stop_reason": response.stop_reason
}
class GeminiProvider(AIProvider):
"""Google Gemini provider"""
def __init__(self):
self.api_key = os.getenv("GOOGLE_API_KEY") or os.getenv("GEMINI_API_KEY")
self.default_model = "gemini-2.0-flash-exp"
def is_available(self) -> bool:
"""Check if Gemini is available"""
try:
import google.generativeai as genai
return bool(self.api_key)
except ImportError:
return False
def _convert_tools_to_gemini_format(self, claude_tools: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Convert Claude tool format to Gemini function declarations"""
gemini_tools = []
for tool in claude_tools:
# Convert from Claude's format to Gemini's format
function_declaration = {
"name": tool.get("name"),
"description": tool.get("description", ""),
"parameters": {
"type": "object",
"properties": {},
"required": []
}
}
# Convert input schema
if "input_schema" in tool:
schema = tool["input_schema"]
if "properties" in schema:
function_declaration["parameters"]["properties"] = schema["properties"]
if "required" in schema:
function_declaration["parameters"]["required"] = schema["required"]
gemini_tools.append(function_declaration)
return gemini_tools
async def chat(
self,
message: str,
system_prompt: str,
history: List[Dict[str, Any]],
tools: Optional[List[Dict[str, Any]]] = None,
temperature: float = 0.7,
mcp_handler=None,
mcp_context=None
) -> Dict[str, Any]:
"""Chat with Gemini"""
if not self.is_available():
return {
"success": False,
"response": "Gemini not available. Install google-generativeai SDK or set GOOGLE_API_KEY/GEMINI_API_KEY.",
"model": "error",
"tools_used": [],
"stop_reason": "error"
}
import google.generativeai as genai
genai.configure(api_key=self.api_key)
# Build chat history
gemini_history = []
for msg in history[-6:]:
role = msg.get("role", "user")
content = msg.get("content", "")
if content and role in ["user", "assistant"]:
gemini_history.append({
"role": "user" if role == "user" else "model",
"parts": [content]
})
# Create model with tools if available
model_kwargs = {
"model_name": self.default_model,
"generation_config": {
"temperature": temperature,
"max_output_tokens": 4096,
},
"system_instruction": system_prompt
}
# Convert and add tools if available
if tools and mcp_handler:
gemini_tools = self._convert_tools_to_gemini_format(tools)
model_kwargs["tools"] = gemini_tools
model = genai.GenerativeModel(**model_kwargs)
# Start chat
chat = model.start_chat(history=gemini_history)
# Send message with tool execution loop
tools_used = []
max_iterations = 5
iteration = 0
current_message = message
while iteration < max_iterations:
iteration += 1
response = await asyncio.to_thread(chat.send_message, current_message)
# Check for function calls
if response.candidates and response.candidates[0].content.parts:
has_function_call = False
for part in response.candidates[0].content.parts:
if hasattr(part, 'function_call') and part.function_call:
has_function_call = True
func_call = part.function_call
tool_name = func_call.name
tool_args = dict(func_call.args)
# Execute tool
result = await mcp_handler.execute_tool(
tool_name=tool_name,
arguments=tool_args,
context=mcp_context
)
tools_used.append({
"tool": tool_name,
"success": result.success,
"duration_ms": result.duration_ms
})
# Format result for Gemini
function_response = {
"name": tool_name,
"response": result.result if result.success else {"error": result.error}
}
# Send function response back
current_message = genai.protos.Content(
parts=[genai.protos.Part(
function_response=genai.protos.FunctionResponse(
name=tool_name,
response=function_response
)
)]
)
break
# If no function call, we're done
if not has_function_call:
break
else:
break
# Extract final response text
response_text = ""
if response.candidates and response.candidates[0].content.parts:
for part in response.candidates[0].content.parts:
if hasattr(part, 'text'):
response_text += part.text
return {
"success": True,
"response": response_text,
"model": self.default_model,
"tools_used": tools_used,
"stop_reason": "stop" if response.candidates else "error"
}
# Factory function
def get_ai_provider(model_name: str) -> AIProvider:
"""Get AI provider by name"""
if model_name.lower() in ["gemini", "google"]:
return GeminiProvider()
else:
return ClaudeProvider()

View File

@@ -0,0 +1,68 @@
import os
import logging
from logging.handlers import RotatingFileHandler
from fastapi import APIRouter, HTTPException
from pydantic import BaseModel
from typing import List, Any, Optional
# --- Configuration ---
# Use project-local logs directory to avoid permission issues
_current_file = os.path.dirname(os.path.abspath(__file__))
_project_root = os.path.dirname(os.path.dirname(_current_file))
LOG_DIR = os.path.join(_project_root, ".dss", "logs", "browser-logs")
LOG_FILE = os.path.join(LOG_DIR, "browser.log")
# Ensure log directory exists
os.makedirs(LOG_DIR, exist_ok=True)
# --- Logging Setup ---
# We use a specific logger for browser logs to separate them from app logs
browser_logger = logging.getLogger("browser_logger")
browser_logger.setLevel(logging.INFO)
# Rotating file handler: 10MB max size, keep last 5 backups
handler = RotatingFileHandler(LOG_FILE, maxBytes=10*1024*1024, backupCount=5)
formatter = logging.Formatter(
'%(asctime)s [%(levelname)s] [BROWSER] %(message)s'
)
handler.setFormatter(formatter)
browser_logger.addHandler(handler)
# --- API Router ---
router = APIRouter()
class LogEntry(BaseModel):
level: str
timestamp: str
message: str
data: Optional[List[Any]] = None
class LogBatch(BaseModel):
logs: List[LogEntry]
@router.post("/api/logs/browser")
async def receive_browser_logs(batch: LogBatch):
"""
Receives a batch of logs from the browser and writes them to the log file.
"""
try:
for log in batch.logs:
# Map browser levels to python logging levels
level = log.level.lower()
log_message = f"[{log.timestamp}] {log.message}"
if level == 'error':
browser_logger.error(log_message)
elif level == 'warn':
browser_logger.warning(log_message)
elif level == 'debug':
browser_logger.debug(log_message)
else:
browser_logger.info(log_message)
return {"status": "ok", "count": len(batch.logs)}
except Exception as e:
# Fallback to standard logger if something breaks deeply
logging.error(f"Failed to process browser logs: {str(e)}")
raise HTTPException(status_code=500, detail="Internal processing error")

3064
apps/api/server.py Normal file

File diff suppressed because it is too large Load Diff