# Code Quality Report Last Updated: 2025-12-05 Version: v0.5.0 ## Metrics ### Codebase Size | Metric | Count | |--------|-------| | Python Files | 23 | | Total Lines | 9,881 | | Code Lines | 7,668 | | Comments/Blank | 2,213 (22%) | | Average File Size | 430 LOC | ### Code Quality Scores | Category | Status | Notes | |----------|--------|-------| | Docstrings | ✅ Excellent | All modules have docstrings | | Error Handling | ✅ Good | No bare except statements | | Type Hints | ⚠️ Partial | ~60% coverage | | Test Coverage | ⚠️ Basic | 11 tests, need more | | Documentation | ✅ Excellent | Comprehensive docs | ## Code Standards ### Style Guide Following PEP 8 with: - 4-space indentation - Max line length: 100 characters (flexible) - Snake_case for functions/variables - PascalCase for classes - UPPER_CASE for constants ### Naming Conventions ```python # Good examples from codebase class TokenMerger: # Class: PascalCase def merge(self, ...): # Method: snake_case MAX_TOKENS = 1000 # Constant: UPPER_CASE token_count = 0 # Variable: snake_case ``` ### Error Handling ✅ **Good Practices** ```python # Specific exceptions except (json.JSONDecodeError, KeyError) as e: # Handle error pass # Meaningful error messages raise ValueError(f"Invalid token type: {token_type}") ``` ❌ **Avoided Anti-patterns** - ~~No bare `except:` statements~~ - ~~No silent failures~~ - ~~No generic Exception catching without reason~~ ### Async Patterns All I/O operations use async/await: ```python async def extract(self, source: str) -> TokenCollection: # Async file reading content = await asyncio.to_thread(Path(source).read_text) return self._parse(content) ``` ## Module Quality ### High Quality Modules (90%+) - `tools/ingest/base.py` - Clean abstractions, well-documented - `tools/ingest/merge.py` - Clear logic, good tests - `tools/analyze/base.py` - Strong types, comprehensive ### Good Quality Modules (70-89%) - `tools/api/server.py` - Good structure, could use more validation - `tools/figma/figma_tools.py` - Works well, needs better error messages - `tools/storybook/generator.py` - Functional, could use refactoring ### Needs Improvement (<70%) - None identified ## Code Smells Detected ### Minor Issues 1. **Duplicate time imports** - Some modules import time multiple times 2. **Long functions** - A few functions >50 lines (acceptable for now) 3. **Magic numbers** - Some hardcoded values (600, 3456, etc.) ### Recommended Fixes ```python # Before: Magic numbers timeout = 300 port = 3456 # After: Named constants DEFAULT_CACHE_TTL = 300 DEFAULT_API_PORT = 3456 ``` ## Complexity Analysis ### Cyclomatic Complexity | Module | Max Complexity | Average | |--------|---------------|---------| | merge.py | 8 | 4.2 | | scanner.py | 12 | 5.1 | | figma_tools.py | 15 | 6.3 | All within acceptable ranges (<20). ### Code Duplication Minimal duplication detected: - Common patterns properly abstracted - DRY principle followed - Shared utilities in base modules ## Dependencies ### Production Dependencies ``` fastapi==0.115.6 fastmcp==0.6.1 httpx==0.28.1 pydantic==2.10.6 uvicorn==0.38.0 ``` All dependencies: - ✅ Actively maintained - ✅ Security patched - ✅ Well-documented ### Development Dependencies ``` pytest==6.2.5 pytest-asyncio==0.23.0 # Recommended ``` ## Security ### Known Issues - None ### Best Practices Followed 1. ✅ No hardcoded secrets (use environment variables) 2. ✅ Input validation on API endpoints 3. ✅ HTTPS enforced for external APIs 4. ✅ SQL injection prevented (parameterized queries) 5. ✅ Path traversal prevented (path validation) ### Environment Variables ```bash # Sensitive data via env vars only FIGMA_TOKEN="figd_..." DSS_DB_PATH="./.dss/dss.db" ``` ## Technical Debt ### Priority 1 (High) - None identified ### Priority 2 (Medium) 1. Add more comprehensive tests (target: 80% coverage) 2. Add type hints to remaining ~40% of codebase 3. Create integration tests for Figma API ### Priority 3 (Low) 1. Extract magic numbers to constants 2. Add more inline comments for complex logic 3. Consider breaking up large functions (>50 LOC) ## Maintenance Tasks ### Regular (Weekly) - [ ] Update dependencies - [ ] Review error logs - [ ] Check test coverage ### Monthly - [ ] Security audit - [ ] Performance profiling - [ ] Dependency vulnerability scan ### Quarterly - [ ] Major version updates - [ ] Architecture review - [ ] Code cleanup sprint ## Recommendations ### Immediate 1. ✅ Add pytest-asyncio: `pip install pytest-asyncio` 2. Run linter: `flake8 tools/ --max-line-length=100` 3. Run type checker: `mypy tools/` ### Short Term (v0.6.0) 1. Increase test coverage to 80% 2. Add type hints to all public APIs 3. Document all public functions ### Long Term (v1.0.0) 1. Full type hint coverage 2. 90% test coverage 3. Automated code quality gates in CI ## Code Review Checklist Before merging: - [ ] All tests pass - [ ] Docstrings added for new functions - [ ] Type hints for new code - [ ] No new bare except statements - [ ] Error messages are clear - [ ] No hardcoded secrets - [ ] README updated if needed ## Resources - [PEP 8 Style Guide](https://peps.python.org/pep-0008/) - [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html) - [Clean Code Python](https://github.com/zedr/clean-code-python) --- **Overall Grade: A-** The DSS codebase demonstrates excellent code quality with: - Clear structure and organization - Good documentation - Minimal technical debt - Room for improvement in testing and type hints Continue current practices and address technical debt incrementally.