Files
dss/.dss/WORKFLOWS/04-workflow-debugging.md
Digital Production Factory 276ed71f31 Initial commit: Clean DSS implementation
Migrated from design-system-swarm with fresh git history.
Old project history preserved in /home/overbits/apps/design-system-swarm

Core components:
- MCP Server (Python FastAPI with mcp 1.23.1)
- Claude Plugin (agents, commands, skills, strategies, hooks, core)
- DSS Backend (dss-mvp1 - token translation, Figma sync)
- Admin UI (Node.js/React)
- Server (Node.js/Express)
- Storybook integration (dss-mvp1/.storybook)

Self-contained configuration:
- All paths relative or use DSS_BASE_PATH=/home/overbits/dss
- PYTHONPATH configured for dss-mvp1 and dss-claude-plugin
- .env file with all configuration
- Claude plugin uses ${CLAUDE_PLUGIN_ROOT} for portability

Migration completed: $(date)
🤖 Clean migration with full functionality preserved
2025-12-09 18:45:48 -03:00

13 KiB

Workflow 04: Debug Workflow Execution

Purpose: Meta-workflow for debugging the workflow system itself and MCP tool integration

When to Use:

  • Workflow execution fails
  • MCP tools not responding
  • Workflow steps don't produce expected results
  • API endpoints returning errors
  • Communication between layers broken

Estimated Time: 10-20 minutes


Prerequisites

  • Understanding of 3-layer architecture (Browser → API → MCP)
  • Access to server logs
  • MCP server running
  • API server running

Architecture Overview

┌─────────────────────────────────────────────────────────────┐
│ Layer 1: Browser (JavaScript)                               │
│  - browser-logger.js: Captures logs → sessionStorage        │
│  - window.__DSS_BROWSER_LOGS API                            │
└─────────────────────────────────────────────────────────────┘
                           ↓
┌─────────────────────────────────────────────────────────────┐
│ Layer 2: API Server (Python/FastAPI)                        │
│  - POST /api/browser-logs: Receive logs from browser        │
│  - GET /api/browser-logs/:id: Retrieve logs                 │
│  - GET /api/debug/diagnostic: System status                 │
│  - GET /api/debug/workflows: List workflows                 │
└─────────────────────────────────────────────────────────────┘
                           ↓
┌─────────────────────────────────────────────────────────────┐
│ Layer 3: MCP Server (Python/MCP)                            │
│  - dss_get_browser_diagnostic: Get browser summary          │
│  - dss_get_browser_errors: Get browser errors               │
│  - dss_get_browser_network: Get network requests            │
│  - dss_get_server_diagnostic: Get server health             │
│  - dss_run_workflow: Execute workflow                       │
│  - dss_list_workflows: List available workflows             │
└─────────────────────────────────────────────────────────────┘

Step-by-Step Procedure

Step 1: Verify All Services Running

Check API Server:

# Check if running
systemctl status dss-api

# Or check process
ps aux | grep "uvicorn.*tools.api.server:app"

# Check port listening
lsof -i :3456

Expected:

● dss-api.service - DSS API Server
   Loaded: loaded
   Active: active (running)

If not running:

# Start service
systemctl start dss-api

# Or run manually for debugging
cd /home/overbits/dss
uvicorn tools.api.server:app --host 0.0.0.0 --port 3456

Check MCP Server:

# Check if running
systemctl status dss-mcp

# Or check process
ps aux | grep "tools.dss_mcp.server"

# Check port listening
lsof -i :3457

Expected:

● dss-mcp.service - DSS MCP Server
   Loaded: loaded
   Active: active (running)

If not running:

# Start service
systemctl start dss-mcp

# Or run manually for debugging
cd /home/overbits/dss
python3 -m tools.dss_mcp.server

Step 2: Test Each Layer Independently

Layer 1 - Browser Test:

// In browser console at https://dss.overbits.luz.uy/

// Check logger loaded
console.log(window.__DSS_BROWSER_LOGS ? '✅ Logger loaded' : '❌ Logger not loaded');

// Test logging
console.log('Test log');
console.error('Test error');

// Check logs captured
const logs = window.__DSS_BROWSER_LOGS.all();
console.log(`Captured ${logs.length} logs`);

// Test export
const exported = window.__DSS_BROWSER_LOGS.export();
console.log('Export structure:', Object.keys(exported));

Expected:

✅ Logger loaded
Captured 5 logs
Export structure: ["sessionId", "exportedAt", "logs", "diagnostic"]

Layer 2 - API Test:

# Test health endpoint
curl http://localhost:3456/health

# Test debug diagnostic
curl http://localhost:3456/api/debug/diagnostic

# Test workflows list
curl http://localhost:3456/api/debug/workflows

# Test browser logs receive (POST)
curl -X POST http://localhost:3456/api/browser-logs \
  -H "Content-Type: application/json" \
  -d '{
    "sessionId": "test-123",
    "logs": [{"level": "log", "message": "test"}]
  }'

# Test browser logs retrieve (GET)
curl http://localhost:3456/api/browser-logs/test-123

Expected:

{"status": "healthy", "database": "ok", "mcp": "ok"}
{"status": "healthy", "browser_sessions": 1, ...}
{"workflows": ["01-capture-browser-logs", ...]}
{"status": "stored", "sessionId": "test-123"}
{"sessionId": "test-123", "logs": [...]}

Layer 3 - MCP Test:

# Test MCP server directly (if running on localhost:3457)
curl http://localhost:3457/tools

# Or use Claude Code to test MCP tools
# (These are available as mcp__dss__get_browser_diagnostic etc.)

Expected: List of available MCP tools


Step 3: Test Data Flow End-to-End

Full Flow Test:

  1. Generate browser logs:
// In browser console
console.log('Flow test: Step 1');
console.error('Flow test: Error');
fetch('/api/config');
  1. Export from browser:
const logs = window.__DSS_BROWSER_LOGS.export();
console.log('Exported', logs.logs.length, 'logs');
  1. Upload to API:
fetch('/api/browser-logs', {
  method: 'POST',
  headers: { 'Content-Type': 'application/json' },
  body: JSON.stringify(logs)
}).then(r => r.json()).then(result => {
  console.log('Uploaded:', result.sessionId);
  return result.sessionId;
});
  1. Retrieve via API:
# Use session ID from step 3
curl http://localhost:3456/api/browser-logs/<SESSION_ID>
  1. Access via MCP (from Claude Code):
Use tool: dss_get_browser_diagnostic

Expected: Data flows through all 3 layers successfully


Step 4: Debug Common Workflow Issues

Issue 1: Workflow Not Found

Symptoms:

curl http://localhost:3456/api/debug/workflows
# Returns empty array or missing workflow

Diagnosis:

# Check if workflow files exist
ls -la /home/overbits/dss/.dss/WORKFLOWS/

# Check file permissions
chmod 644 .dss/WORKFLOWS/*.md

Solution:

  • Ensure workflow .md files exist in .dss/WORKFLOWS/
  • Check filenames match expected pattern: NN-workflow-name.md
  • Restart API server to reload workflow list

Issue 2: MCP Tool Returns Error

Symptoms:

Error: Connection refused
Error: Tool not found
Error: Invalid parameters

Diagnosis:

# Check MCP server logs
journalctl -u dss-mcp -n 50

# Check API server logs
journalctl -u dss-api -n 50

# Test API endpoint directly
curl http://localhost:3456/api/debug/diagnostic

Solution:

  • If connection refused: Start MCP server
  • If tool not found: Check tool registration in tools/dss_mcp/server.py
  • If invalid parameters: Check tool schema matches input
  • Check for Python exceptions in logs

Issue 3: Browser Logs Not Captured

Symptoms:

window.__DSS_BROWSER_LOGS.all()
// Returns []

Diagnosis:

// Check if logger initialized
console.log(window.__DSS_BROWSER_LOGGER);

// Check sessionStorage
console.log(sessionStorage.getItem('dss-browser-logs-' + window.__DSS_BROWSER_LOGGER?.sessionId));

// Check for errors
window.__DSS_BROWSER_LOGS.errors();

Solution:

  • If logger undefined: Import browser-logger.js in HTML
  • If sessionStorage empty: Check browser privacy settings
  • If capturing but not storing: Check storage quota
  • Force reload with DevTools open

Issue 4: API Endpoint Not Found

Symptoms:

curl http://localhost:3456/api/debug/diagnostic
# 404 Not Found

Diagnosis:

# Check if endpoint registered in server.py
grep -n "debug/diagnostic" tools/api/server.py

# Check API server started correctly
journalctl -u dss-api -n 20 | grep -i error

# Check routes registered
curl http://localhost:3456/docs
# (FastAPI auto-generated docs)

Solution:

  • If endpoint not in code: Add endpoint to tools/api/server.py
  • If server error: Fix error and restart
  • If routes not registered: Check decorator syntax (@app.get(...))

Step 5: Verify Workflow Execution

Test Workflow Execution:

# List available workflows
curl http://localhost:3456/api/debug/workflows

# Execute a workflow (when implemented)
curl -X POST http://localhost:3456/api/debug/workflows/01-capture-browser-logs

Or via MCP:

Use tool: dss_list_workflows
Use tool: dss_run_workflow with workflow_name="01-capture-browser-logs"

Expected: Workflow steps execute in order and return results


Step 6: Check Persistence (Supervisord)

Verify Services Auto-Restart:

# Check supervisor status
supervisorctl status

# Test auto-restart
supervisorctl stop dss-api
sleep 5
supervisorctl status dss-api  # Should auto-restart

# Check supervisor logs
tail -f /var/log/supervisor/dss-api-stdout.log
tail -f /var/log/supervisor/dss-mcp-stdout.log

Expected:

dss-api     RUNNING   pid 12345, uptime 0:00:05
dss-mcp     RUNNING   pid 12346, uptime 0:00:05

Debugging Checklist

  • API server running and accessible on port 3456
  • MCP server running and accessible on port 3457
  • Browser logger loaded in dashboard
  • API health endpoint returns "healthy"
  • API debug endpoints respond correctly
  • Workflow files exist in .dss/WORKFLOWS/
  • MCP tools registered and accessible
  • Data flows from browser → API → MCP
  • Supervisord manages services
  • Services auto-restart on failure

Common Error Messages

"NameError: name 'get_connection' is not defined"

Cause: Missing import in server.py Solution: Add to imports: from storage.database import get_connection

"ModuleNotFoundError: No module named 'tools.dss_mcp.tools.debug_tools'"

Cause: debug_tools.py not created or not in path Solution: Create tools/dss_mcp/tools/debug_tools.py with tool definitions

"Address already in use"

Cause: Port 3456 or 3457 already in use Solution: Find and kill process: lsof -i :3456 then kill -9 <PID>

"sessionStorage is not defined"

Cause: Running in Node.js or non-browser environment Solution: Only use browser logger in actual browser context

"Cannot read property 'diagnostic' of undefined"

Cause: Browser logger not loaded Solution: Import browser-logger.js before other scripts


Success Criteria

  • All services running (API, MCP)
  • Each layer tested independently
  • End-to-end data flow working
  • Workflows executable
  • MCP tools accessible from Claude Code
  • Auto-restart working via supervisord
  • No errors in logs

Workflow Development Guide

Creating New Workflows:

  1. Create .dss/WORKFLOWS/NN-workflow-name.md
  2. Use this template:
# Workflow NN: Title

**Purpose**: What this workflow does

**When to Use**: Scenarios

**Estimated Time**: X-Y minutes

---

## Prerequisites
- Required conditions
- Required tools

---

## Step-by-Step Procedure

### Step 1: Title
**Action**: What to do
**Expected Result**: What should happen
**Troubleshooting**: If issues occur

### Step 2: Title
...

---

## Success Criteria
- ✅ Criterion 1
- ✅ Criterion 2

---

## Related Documentation
- Link 1
- Link 2
  1. Test workflow manually following steps
  2. Document actual results and refine
  3. Restart API server to load new workflow

Next Steps

  • If all layers working: Workflows are ready to use
  • If issues found: Document in .dss/KNOWN_ISSUES.md
  • If new workflow needed: Create following template above
  • Regular testing: Run this workflow monthly to verify system health

  • .dss/MCP_DEBUG_TOOLS_ARCHITECTURE.md - Complete architecture spec
  • .dss/WORKFLOWS/01-capture-browser-logs.md - Browser log workflow
  • .dss/WORKFLOWS/02-diagnose-errors.md - Error diagnosis workflow
  • .dss/WORKFLOWS/03-debug-performance.md - Performance workflow

MCP Tool Access

From Claude Code:

Use tool: dss_list_workflows
Use tool: dss_run_workflow
Use tool: dss_get_server_diagnostic

These tools enable workflow execution and debugging from Claude Code.