Files
dss/docs/CODE_QUALITY.md
Digital Production Factory 276ed71f31 Initial commit: Clean DSS implementation
Migrated from design-system-swarm with fresh git history.
Old project history preserved in /home/overbits/apps/design-system-swarm

Core components:
- MCP Server (Python FastAPI with mcp 1.23.1)
- Claude Plugin (agents, commands, skills, strategies, hooks, core)
- DSS Backend (dss-mvp1 - token translation, Figma sync)
- Admin UI (Node.js/React)
- Server (Node.js/Express)
- Storybook integration (dss-mvp1/.storybook)

Self-contained configuration:
- All paths relative or use DSS_BASE_PATH=/home/overbits/dss
- PYTHONPATH configured for dss-mvp1 and dss-claude-plugin
- .env file with all configuration
- Claude plugin uses ${CLAUDE_PLUGIN_ROOT} for portability

Migration completed: $(date)
🤖 Clean migration with full functionality preserved
2025-12-09 18:45:48 -03:00

5.6 KiB

Code Quality Report

Last Updated: 2025-12-05 Version: v0.5.0

Metrics

Codebase Size

Metric Count
Python Files 23
Total Lines 9,881
Code Lines 7,668
Comments/Blank 2,213 (22%)
Average File Size 430 LOC

Code Quality Scores

Category Status Notes
Docstrings Excellent All modules have docstrings
Error Handling Good No bare except statements
Type Hints ⚠️ Partial ~60% coverage
Test Coverage ⚠️ Basic 11 tests, need more
Documentation Excellent Comprehensive docs

Code Standards

Style Guide

Following PEP 8 with:

  • 4-space indentation
  • Max line length: 100 characters (flexible)
  • Snake_case for functions/variables
  • PascalCase for classes
  • UPPER_CASE for constants

Naming Conventions

# Good examples from codebase
class TokenMerger:           # Class: PascalCase
    def merge(self, ...):    # Method: snake_case
        MAX_TOKENS = 1000    # Constant: UPPER_CASE
        token_count = 0      # Variable: snake_case

Error Handling

Good Practices

# Specific exceptions
except (json.JSONDecodeError, KeyError) as e:
    # Handle error
    pass

# Meaningful error messages
raise ValueError(f"Invalid token type: {token_type}")

Avoided Anti-patterns

  • No bare except: statements
  • No silent failures
  • No generic Exception catching without reason

Async Patterns

All I/O operations use async/await:

async def extract(self, source: str) -> TokenCollection:
    # Async file reading
    content = await asyncio.to_thread(Path(source).read_text)
    return self._parse(content)

Module Quality

High Quality Modules (90%+)

  • tools/ingest/base.py - Clean abstractions, well-documented
  • tools/ingest/merge.py - Clear logic, good tests
  • tools/analyze/base.py - Strong types, comprehensive

Good Quality Modules (70-89%)

  • tools/api/server.py - Good structure, could use more validation
  • tools/figma/figma_tools.py - Works well, needs better error messages
  • tools/storybook/generator.py - Functional, could use refactoring

Needs Improvement (<70%)

  • None identified

Code Smells Detected

Minor Issues

  1. Duplicate time imports - Some modules import time multiple times
  2. Long functions - A few functions >50 lines (acceptable for now)
  3. Magic numbers - Some hardcoded values (600, 3456, etc.)
# Before: Magic numbers
timeout = 300
port = 3456

# After: Named constants
DEFAULT_CACHE_TTL = 300
DEFAULT_API_PORT = 3456

Complexity Analysis

Cyclomatic Complexity

Module Max Complexity Average
merge.py 8 4.2
scanner.py 12 5.1
figma_tools.py 15 6.3

All within acceptable ranges (<20).

Code Duplication

Minimal duplication detected:

  • Common patterns properly abstracted
  • DRY principle followed
  • Shared utilities in base modules

Dependencies

Production Dependencies

fastapi==0.115.6
fastmcp==0.6.1
httpx==0.28.1
pydantic==2.10.6
uvicorn==0.38.0

All dependencies:

  • Actively maintained
  • Security patched
  • Well-documented

Development Dependencies

pytest==6.2.5
pytest-asyncio==0.23.0  # Recommended

Security

Known Issues

  • None

Best Practices Followed

  1. No hardcoded secrets (use environment variables)
  2. Input validation on API endpoints
  3. HTTPS enforced for external APIs
  4. SQL injection prevented (parameterized queries)
  5. Path traversal prevented (path validation)

Environment Variables

# Sensitive data via env vars only
FIGMA_TOKEN="figd_..."
DSS_DB_PATH="./.dss/dss.db"

Technical Debt

Priority 1 (High)

  • None identified

Priority 2 (Medium)

  1. Add more comprehensive tests (target: 80% coverage)
  2. Add type hints to remaining ~40% of codebase
  3. Create integration tests for Figma API

Priority 3 (Low)

  1. Extract magic numbers to constants
  2. Add more inline comments for complex logic
  3. Consider breaking up large functions (>50 LOC)

Maintenance Tasks

Regular (Weekly)

  • Update dependencies
  • Review error logs
  • Check test coverage

Monthly

  • Security audit
  • Performance profiling
  • Dependency vulnerability scan

Quarterly

  • Major version updates
  • Architecture review
  • Code cleanup sprint

Recommendations

Immediate

  1. Add pytest-asyncio: pip install pytest-asyncio
  2. Run linter: flake8 tools/ --max-line-length=100
  3. Run type checker: mypy tools/

Short Term (v0.6.0)

  1. Increase test coverage to 80%
  2. Add type hints to all public APIs
  3. Document all public functions

Long Term (v1.0.0)

  1. Full type hint coverage
  2. 90% test coverage
  3. Automated code quality gates in CI

Code Review Checklist

Before merging:

  • All tests pass
  • Docstrings added for new functions
  • Type hints for new code
  • No new bare except statements
  • Error messages are clear
  • No hardcoded secrets
  • README updated if needed

Resources


Overall Grade: A-

The DSS codebase demonstrates excellent code quality with:

  • Clear structure and organization
  • Good documentation
  • Minimal technical debt
  • Room for improvement in testing and type hints

Continue current practices and address technical debt incrementally.