Files
dss/.dss/WORKFLOWS/README.md
Digital Production Factory 276ed71f31 Initial commit: Clean DSS implementation
Migrated from design-system-swarm with fresh git history.
Old project history preserved in /home/overbits/apps/design-system-swarm

Core components:
- MCP Server (Python FastAPI with mcp 1.23.1)
- Claude Plugin (agents, commands, skills, strategies, hooks, core)
- DSS Backend (dss-mvp1 - token translation, Figma sync)
- Admin UI (Node.js/React)
- Server (Node.js/Express)
- Storybook integration (dss-mvp1/.storybook)

Self-contained configuration:
- All paths relative or use DSS_BASE_PATH=/home/overbits/dss
- PYTHONPATH configured for dss-mvp1 and dss-claude-plugin
- .env file with all configuration
- Claude plugin uses ${CLAUDE_PLUGIN_ROOT} for portability

Migration completed: $(date)
🤖 Clean migration with full functionality preserved
2025-12-09 18:45:48 -03:00

6.9 KiB

DSS Debug Workflows

Purpose: Step-by-step procedures for common debugging tasks in Design System Swarm

How to Use: Each workflow is a standalone markdown document with:

  • Clear prerequisites
  • Step-by-step instructions with console commands
  • Expected results for each step
  • Troubleshooting guidance
  • Success criteria

Available Workflows

01 - Capture Browser Logs

Purpose: Capture and retrieve all browser-side logs from DSS dashboard

When to Use:

  • User reports dashboard not loading
  • JavaScript errors in browser
  • Network request failures
  • Performance issues

Estimated Time: 2-5 minutes

Key Steps:

  1. Open dashboard and DevTools
  2. Verify browser logger loaded
  3. Get diagnostic summary
  4. Retrieve specific log types
  5. Export logs for analysis

02 - Diagnose Errors

Purpose: Systematically diagnose and resolve errors in DSS dashboard and API

When to Use:

  • Dashboard displays error messages
  • API requests failing
  • Server health check shows degraded status
  • User reports functionality not working

Estimated Time: 10-30 minutes

Key Steps:

  1. Identify error scope (browser/API/database/system)
  2. Diagnose browser-side errors
  3. Diagnose API-side errors
  4. Diagnose database errors
  5. Diagnose system-wide issues
  6. Verify fix

03 - Debug Performance

Purpose: Diagnose and resolve performance issues in DSS dashboard and API

When to Use:

  • Dashboard loads slowly
  • API requests taking too long
  • Browser becomes unresponsive
  • High memory usage warnings

Estimated Time: 15-45 minutes

Key Steps:

  1. Gather performance baseline
  2. Diagnose slow page load
  3. Diagnose slow API requests
  4. Diagnose memory leaks
  5. Diagnose CPU bottlenecks
  6. Server-side performance check

04 - Workflow Debugging

Purpose: Debug the workflow system itself and MCP tool integration

When to Use:

  • Workflow execution fails
  • MCP tools not responding
  • API endpoints returning errors
  • Communication between layers broken

Estimated Time: 10-20 minutes

Key Steps:

  1. Verify all services running
  2. Test each layer independently
  3. Test data flow end-to-end
  4. Debug common workflow issues
  5. Verify workflow execution
  6. Check persistence (supervisord)

Quick Reference

Access from Command Line

# View workflow list
ls -1 /home/overbits/dss/.dss/WORKFLOWS/*.md

# Read a workflow
cat /home/overbits/dss/.dss/WORKFLOWS/01-capture-browser-logs.md

# Quick hook for browser logs
/home/overbits/dss/.dss/GET_BROWSER_LOGS.sh

Access from API

# List workflows
curl http://localhost:3456/api/debug/workflows

# Execute workflow (when implemented)
curl -X POST http://localhost:3456/api/debug/workflows/01-capture-browser-logs

Access from MCP (Claude Code)

Use tool: dss_list_workflows
Use tool: dss_run_workflow with workflow_name="01-capture-browser-logs"

Workflow Categories

User-Facing Issues

  • 01 - Capture Browser Logs: First step for any dashboard issue
  • 02 - Diagnose Errors: When specific errors occur

Performance Issues

  • 03 - Debug Performance: Slow loading, high memory, CPU bottlenecks

System Issues

  • 04 - Workflow Debugging: When the debug tools themselves fail

Architecture Context

These workflows operate within the 3-layer debug architecture:

┌──────────────────────────────────────────┐
│ Layer 1: Browser (JavaScript)            │
│  - browser-logger.js captures logs       │
│  - window.__DSS_BROWSER_LOGS API         │
└──────────────────────────────────────────┘
                   ↓
┌──────────────────────────────────────────┐
│ Layer 2: API Server (FastAPI)            │
│  - /api/browser-logs endpoints           │
│  - /api/debug/* endpoints                │
└──────────────────────────────────────────┘
                   ↓
┌──────────────────────────────────────────┐
│ Layer 3: MCP Server (Python/MCP)         │
│  - dss_get_browser_diagnostic            │
│  - dss_get_browser_errors                │
│  - dss_run_workflow                      │
└──────────────────────────────────────────┘

See .dss/MCP_DEBUG_TOOLS_ARCHITECTURE.md for complete architecture details.


Development Guide

Creating New Workflows

  1. Choose Number: Next sequential number (05, 06, etc.)
  2. Create File: .dss/WORKFLOWS/NN-workflow-name.md
  3. Use Template: See workflow 04 for template structure
  4. Include:
    • Purpose and when to use
    • Prerequisites
    • Step-by-step instructions with commands
    • Expected results for each step
    • Troubleshooting guidance
    • Success criteria
    • Related documentation
  5. Test: Run through workflow manually
  6. Refine: Update based on actual experience
  7. Restart API: To load new workflow in system

Workflow Template Structure

# Workflow NN: Title

**Purpose**: Brief description
**When to Use**: Scenarios
**Estimated Time**: X-Y minutes

---

## Prerequisites
- Required items

---

## Step-by-Step Procedure

### Step 1: Title
**Action**: Commands or actions
**Expected Result**: What should happen
**Troubleshooting**: If issues occur

---

## Success Criteria
- ✅ Checkpoints

---

## Related Documentation
- Links to related docs

Maintenance

Regular Testing

  • Run workflow 04 monthly to verify system health
  • Update workflows when architecture changes
  • Add new workflows for recurring issues

Update Triggers

  • New debug tools added
  • Architecture changes
  • New common issues discovered
  • User feedback on workflows

  • .dss/MCP_DEBUG_TOOLS_ARCHITECTURE.md - Complete MCP integration architecture
  • .dss/BROWSER_LOG_CAPTURE_PROCEDURE.md - Browser logger details
  • .dss/GET_BROWSER_LOGS.sh - Quick reference hook
  • .dss/DSS_DIAGNOSTIC_REPORT_20251206.md - Example diagnostic report
  • .dss/DEBUG_SESSION_SUMMARY.md - Previous debug session

Implementation Status

  • Workflow 01: Capture Browser Logs - Complete
  • Workflow 02: Diagnose Errors - Complete
  • Workflow 03: Debug Performance - Complete
  • Workflow 04: Workflow Debugging - Complete
  • API Integration: Endpoints need implementation
  • MCP Integration: Tools need implementation
  • Supervisord: Service configs need creation

See architecture doc for full implementation checklist.